Lexically-Triggered Hidden Markov Models for Clinical Document Coding
نویسندگان
چکیده
The automatic coding of clinical documents is an important task for today’s healthcare providers. Though it can be viewed as multi-label document classification, the coding problem has the interesting property that most code assignments can be supported by a single phrase found in the input document. We propose a Lexically-Triggered Hidden Markov Model (LT-HMM) that leverages these phrases to improve coding accuracy. The LT-HMM works in two stages: first, a lexical match is performed against a term dictionary to collect a set of candidate codes for a document. Next, a discriminative HMM selects the best subset of codes to assign to the document by tagging candidates as present or absent. By confirming codes proposed by a dictionary, the LT-HMM can share features across codes, enabling strong performance even on rare codes. In fact, we are able to recover codes that do not occur in the training set at all. Our approach achieves the best ever performance on the 2007Medical NLP Challenge test set, with an F-measure of 89.84.
منابع مشابه
Introducing Busy Customer Portfolio Using Hidden Markov Model
Due to the effective role of Markov models in customer relationship management (CRM), there is a lack of comprehensive literature review which contains all related literatures. In this paper the focus is on academic databases to find all the articles that had been published in 2011 and earlier. One hundred articles were identified and reviewed to find direct relevance for applying Markov models...
متن کاملSpeaker Independent Speech Recognition Using Hidden Markov Models for Persian Isolated Words
متن کامل
Speaker Independent Speech Recognition Using Hidden Markov Models for Persian Isolated Words
متن کامل
Document Classification Using Layout Analysis
This paper describes methods for document image classification at the spatial layout level. The goal is to develop fast algorithms for initial document type classification without OCR, which can then be verified using more elaborate methods based on more detailed geometric and syntactic models. A novel feature set called interval encoding is introduced to capture elements of spatial layout. Thi...
متن کاملCoding with Partially Hidden Markov Models
Partially hidden Markov models (PHMM) are introduced. They are a variation of the hidden Markov models (HMM) combining the power of explicit conditioning on past observations and the power of using hidden states. (P)HMM may be combined with arithmetic coding for lossless data compression. A general 2-part coding scheme for given model order but unknown parameters based on PHMM is presented. A f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011